https://bayt.page.link/TqnHPgKSps1GvcXc9
Create a job alert for similar positions

Job Description

Customer addresses, Geospatial information and Road-network play a crucial role in Amazon Logistics' Delivery Planning systems. We own exciting science problems in the areas of Address Normalization, Geocode learning, Maps learning, Time estimations including route-time, delivery-time, transit-time predictions which are key inputs in delivery planning. As part of the Geospatial science team within Last Mile, you will partner closely with other scientists and engineers in a collegial environment to develop enterprise ML solutions with a clear path to business impact. The setting also gives you an opportunity to think about a complex large-scale problem for multiple years and building increasingly sophisticated solutions year over year. In the process there will be opportunity to innovate, explore SOTA and publish the research in internal and external ML conferences.
Successful candidates will have deep knowledge of competing machine learning methods for large scale predictive modelling, natural language processing, semi-supervised & graph based learning. We also look for the experience to graduate prototype models to production and the communication skills to explain complex technical approaches to the stakeholders of varied technical expertise.
Here is a glimpse of the problem spaces and technologies that we deal with on a regular basis:
1. De-duping and organizing addresses into hierarchy while handling noisy, inconsistent, localized and multi-lingual user inputs. We do this at the scale of millions of customers for established (US, EU) as well as emerging geographies (IN, MX). We make use of technologies like LLMs, Weak supervision, Graph-based clustering & Entity matching. We also use additional modalities such as building outlines in maps, street view images and 3P datasets, gazetteers.
2. Build a generic ML framework which leverages relationship between places to improve delivery experience by learning precise delivery locations and propagating attributes, such as business hours and safe places.
3. (Work done in sister teams) Developing systems to consume inputs from areal imagery and optimize our maps to enable efficient delivery planning. Also building models to estimate travel time, turn costs, optimal route and defect propensities.
Key job responsibilities
As an Applied Scientist I, your responsibility will be to deliver on a well defined but complex business problem, explore SOTA technologies including GenAI and customize the large models as suitable for the application. Your job will be to work on a end-to-end business problem from design to experimentation and implementation. There is also an opportunity to work on open ended ML directions within the space and publish the work in prestigious ML conferences.
About the team
Last Mile Address Intelligence (LMAI) team owns WW charter for address and location learning solutions which are crucial for efficient Last Mile delivery planning. The team works out of Hyderabad and Bangalore offices in India. LMAI is a part of Geospatial science team, which also owns problems in the space of maps learning and travel time estimations. The rest of the Geospatial science team and senior leadership of Last Mile org works out of Bellevue office.
- Experience programming in Java, C++, Python or related language
- Experience with SQL and an RDBMS (e.g., Oracle) or Data Warehouse
- Experience implementing algorithms using both toolkits and self-developed code
- Have publications at top-tier peer-reviewed conferences or journals
Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.


You have reached your limit of 15 Job Alerts. To create a new Job Alert, delete one of your existing Job Alerts first.
Similar jobs alert created successfully. You can manage alerts in settings.
Similar jobs alert disabled successfully. You can manage alerts in settings.